10,411 research outputs found

    Tunable Oscillations in the Purkinje Neuron

    Full text link
    In this paper, we study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We demonstrate the precise rhythmicity of the oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photo-switchable compound. We show that this slow oscillation can be induced in every Purkinje neuron, having periods ranging between 10-25 seconds. Starting from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These results signify an additional functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.Comment: 12 pages, 5 figure

    Chimera states in networks of phase oscillators: the case of two small populations

    Get PDF
    Chimera states are dynamical patterns in networks of coupled oscillators in which regions of synchronous and asynchronous oscillation coexist. Although these states are typically observed in large ensembles of oscillators and analyzed in the continuum limit, chimeras may also occur in systems with finite (and small) numbers of oscillators. Focusing on networks of 2N2N phase oscillators that are organized in two groups, we find that chimera states, corresponding to attracting periodic orbits, appear with as few as two oscillators per group and demonstrate that for N>2N>2 the bifurcations that create them are analogous to those observed in the continuum limit. These findings suggest that chimeras, which bear striking similarities to dynamical patterns in nature, are observable and robust in small networks that are relevant to a variety of real-world systems.Comment: 13 pages, 16 figure

    TM digital image products for applications

    Get PDF
    Computer compatible tapes (CCTs) of LANDSAT 4 thematic mapper (TM) digital image products are compared and reviewed. The following tape formats are discussed: (1) raw band-sequential data (CCT-BT); (2) calibrated data (CCT-AT); and (3) geometrically resampled data (CCT-PT). Each format represents different steps in the process of producing fully corrected TM data. The CCT-BT images are uncorrected radiometrically or geometrically, CCT-AT data are radiometrically calibrated, and CCT-PT images are both radiometrically and geometrically corrected

    TM digital image products for applications

    Get PDF
    The image characteristics of digital data generated by LANDSAT 4 thematic mapper (TM) are discussed. Digital data from the TM resides in tape files at various stages of image processing. Within each image data file, the image lines are blocked by a factor of either 5 for a computer compatible tape CCT-BT, or 4 for a CCT-AT and CCT-PT; in each format, the image file has a different format. Nominal geometric corrections which provide proper geodetic relationships between different parts of the image are available only for the CCT-PT. It is concluded that detector 3 of band 5 on the TM does not respond; this channel of data needs replacement. The empty bin phenomenon in CCT-AT images results from integer truncations of mixed-mode arithmetric operations

    Development of dispersion strengthened chromium alloys Summary report

    Get PDF
    Dispersion strengthened chromium alloys with minimal quantities of interstitial impuritie

    The Relationship Between Moisture Content and X-Ray Sensitivity of Oat Seeds, Avena sativa

    Get PDF
    About a decade ago, Gustafsson (3) reported that the sensitivity of barley seeds to x-ray treatment was positively related to their moisture content. Sensitivity was measured by germination percentage and vigor of seedlings produced from treated seeds. However, Caldecott (1) recently has shown that barley seeds with a moisture percentage between 8 and 16 were more resistant to x-ray damage than those with either a lower or higher water content. These conflicting results probably are related to differences in methods used to temper the seeds by the two investigators. Gustafsson (3) soaked the seeds in water while Caldecott (1) placed them in desicators with different relative humidities. Metabolic activity and x-ray sensitivity of seed would be expected to be enhanced more by the first method. For a discussion of the physical significance of moisture content of seeds on x-ray sensitivity the reader is referred to a paper by Caldecott (2). This paper reports experiments conducted to determine the relationships between moisture content of seeds and x-ray sensitivity in hexaploid oats

    Effect of Recurrent X-Radiation on Germination and Seedling Vigor in Oats

    Get PDF
    The immediate effects of exposing oat seeds to high dosages of X-ray are generally twofold: (a) many of the seeds fail to germinate, and (b) the seedlings produced are stunted. It is generally accepted that these physiologic effects react the same as other environmental variation in biological materials. However, it is possible that even though the physiologic effects disappear in one generation that certain weaknesses may persist but remain hidden. Weakened linkages of some type within chromosomes could conceivably be a case in point. If this is the case, one might expect the effects to be cumulative with repeated x-ray treatment in successive generations, since the basic units affected are probably chromosomes and genes. The study reported herein was conducted to determine to what extent the X-ray damage to oat seeds, measured as germination percentage and seedling vigor, was cumulative with recurrent radiation in one, two, and three seed generations. The measures of seedling vigor were plant height and weight per 100 seedlings

    Geologic application of thermal inertia imaging using HCMM data

    Get PDF
    Three test sites in the western US were selected to discriminate among surface geologic materials on the basis of their thermal properties as determined from HCMM data. Attempts to determine quantitatively accurate thermal inertia values from HCMM digital data met with only partial success due to the effects of sensor miscalibrations, radiative transfer in the atmosphere, and varying meteorology and elevation across a scene. In most instances, apparent thermal inertia was found to be an excellent qualitative representation of true thermal inertia. Computer processing of digital day and night HCMM data allowed construction of geologically useful images. At some test sites, more information was provided by data than LANDSAT data. Soil moisture effects and differences in spectrally dark materials were more effectively displayed using the thermal data

    Radiometric calibration and processing procedure for reflective bands on LANDSAT-4 protoflight Thematic Mapper

    Get PDF
    The radiometric subsystem of NASA's LANDSAT-4 Thematic Mapper (TM) sensor is described. Special emphasis is placed on the internal calibrator (IC) pulse shapes and timing cycle. The procedures for the absolute radiometric calibration of the TM channels with a 122-centimeter integrating sphere and the transfer of radiometric calibration from the channels to the IC are reviewed. The use of the IC to calibrate TM data in the ground processing system consists of pulse integration, pulse averaging, IC state identification, linear regression analysis, and histogram equalization. An overview of the SCROUNGE-era (before August 1983) method is presented. Procedural differences between SCROUNGE and the TIPS-era (after July 1983) and the implications of these differences are discussed

    Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    Get PDF
    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band
    • …
    corecore